129 research outputs found

    Prediction of NB‐LRR resistance genes based on full‐length sequence homology

    Get PDF
    The activation of plant immunity is mediated by resistance (R)‐gene receptors, also known as nucleotide‐binding leucine‐rich repeat (NB‐LRR) genes, which in turn trigger the authentic defense response. R‐gene identification is a crucial goal for both classic and modern plant breeding strategies for disease resistance. The conventional method identifies NB‐LRR genes using a protein motif/domain‐based search (PDS) within an automatically predicted gene set of the respective genome assembly. PDS proved to be imprecise since repeat masking prior to automatic genome annotation unwittingly prevented comprehensive NB‐LRR gene detection. Furthermore, R‐genes have diversified in a species‐specific manner, so that NB‐LRR gene identification cannot be universally standardized. Here, we present the full‐length Homology‐based R‐gene Prediction (HRP) method for the comprehensive identification and annotation of a genome's R‐gene repertoire. Our method has substantially addressed the complex genomic organization of tomato (Solanum lycopersicum) NB‐LRR gene loci, proving to be more performant than the well‐established RenSeq approach. HRP efficiency was also tested on three differently assembled and annotated Beta sp. genomes. Indeed, HRP identified up to 45% more full‐length NB‐LRR genes compared to previous approaches. HRP also turned out to be a more refined strategy for R‐gene allele mining, testified by the identification of hitherto undiscovered Fom‐2 homologs in five Cucurbita sp. genomes. In summary, our high‐performance method for full‐length NB‐LRR gene discovery will propel the identification of novel R‐genes towards development of improved cultivars

    Evaluation of genomic high-throughput sequencing data generated on Illumina HiSeq and Genome Analyzer systems

    Get PDF
    ABSTRACT: BACKGROUND: The generation and analysis of high-throughput sequencing data are becoming a major component of many studies in molecular biology and medical research. Illumina's Genome Analyzer (GA) and HiSeq instruments are currently the most widely used sequencing devices. Here, we comprehensively evaluate properties of genomic HiSeq and GAIIx data derived from two plant genomes and one virus, with read lengths of 95 to 150 bases. RESULTS: We provide quantifications and evidence for GC bias, error rates, error sequence context, effects of quality filtering, and the reliability of quality values. By combining different filtering criteria we reduced error rates 7-fold at the expense of discarding 12.5% of alignable bases. While overall error rates are low in HiSeq data we observed regions of accumulated wrong base calls. Only 3% of all error positions accounted for 24.7% of all substitution errors. Analyzing the forward and reverse strands separately revealed error rates of up to 18.7%. Insertions and deletions occurred at very low rates on average but increased to up to 2% in homopolymers. A positive correlation between read coverage and GC content was found depending on the GC content range. CONCLUSIONS: The errors and biases we report have implications for the use and the interpretation of Illumina sequencing data. GAIIx and HiSeq data sets show slightly different error profiles. Quality filtering is essential to minimize downstream analysis artifacts. Supporting previous recommendations, the strand-specificity provides a criterion to distinguish sequencing errors from low abundance polymorphisms

    Comparative transcriptome analysis of a Trichoplusia ni cell line reveals distinct host responses to intracellular and secreted protein products expressed by recombinant baculoviruses

    Get PDF
    The baculovirus insect cell expression system has become a firmly established production platform in biotechnology. Various complex proteins, multi-subunit particles including veterinary and human vaccines are manufactured with this system on a commercial scale. Apart from baculovirus infected Spodoptera frugiperda (Sf9) cells, the Trichoplusia ni (HighFive) cell line is alternatively used as host organism. In this study, we explored the protein production capabilities of Tnms42 insect cells, a new derivative of HighFive, which is free of latent nodavirus infection. As a model system, a cytosolic (mCherry) and a secreted (hemagglutinin) protein were overexpressed in Tnms42 cells. The response of the host cells was followed in a time course experiment over the infection cycle by comparative transcriptome analysis (RNA-seq). As expected, the baculovirus infection per se had a massive impact on the host cell transcriptome, which was observed by the huge total number of differentially expressed transcripts (\u3e14,000). Despite this severe overall cellular reaction, a specific response could be clearly attributed to the overexpression of secreted hemagglutinin, revealing limits in the secretory capacity of the host cell. About 400 significantly regulated transcripts were identified and assigned to biochemical pathways and gene ontology (GO) categories, all related to protein processing, folding and response to unfolded protein. The identification of relevant target genes will serve to design specific virus engineering concepts for improving the yield of proteins that are dependent on the secretory pathway

    Disruption and pseudoautosomal localization of the major histocompatibility complex in monotremes

    Get PDF
    The characterization and chromosomal mapping of major histocompatibility complex (MHC)-containing BAC clones from platypus and the short-beaked echidna reveals new insights into the evolution of both the mammalian MHC and monotreme sex chromosomes

    ojoplano-mediated basal constriction is essential for optic cup morphogenesis

    Get PDF
    11 pĂĄginas, 7 figuras. To the memory of Dr JosĂŠ-Santiago MartĂ­nez-Vinjoy. Supplementary material for this article is available at http://dev.biologists.org/cgi/content/full/136/13/2165/DC1Although the vertebrate retina is a well-studied paradigm for organogenesis, the morphogenetic mechanisms that carve the architecture of the vertebrate optic cup remain largely unknown. Understanding how the hemispheric shape of an eye is formed requires addressing the fundamental problem of how individual cell behaviour is coordinated to direct epithelial morphogenesis. Here, we analyze the role of ojoplano (opo), an uncharacterized gene whose human ortholog is associated with orofacial clefting syndrome, in the morphogenesis of epithelial tissues. Most notably, when opo is mutated in medaka fish, optic cup folding is impaired. We characterize optic cup morphogenesis in vivo and determine at the cellular level how opo affects this process. opo encodes a developmentally regulated transmembrane protein that localizes to compartments of the secretory pathway and to basal end-feet of the neuroepithelial precursors. We show that Opo regulates the polarized localization of focal adhesion components to the basal cell surface. Furthermore, tissue-specific interference with integrin-adhesive function impairs optic cup folding, resembling the ocular phenotype observed in opo mutants. We propose a model of retinal morphogenesis whereby opo-mediated formation of focal contacts is required to transmit the mechanical tensions that drive the macroscopic folding of the vertebrate optic cup.This work was supported by grants from the Deutsche Forschungsgemeinschaft, Collaborative Research Centre 488, the EU and HFSPO to J.W.; and MEC:BFU2008-04362/BMC to J.R.M.-M.Peer reviewe

    Dissecting the effect of genetic variation on the hepatic expression of drug disposition genes across the collaborative cross mouse strains

    Get PDF
    A central challenge in pharmaceutical research is to investigate genetic variation in response to drugs. The Collaborative Cross (CC) mouse reference population is a promising model for pharmacogenomic studies because of its large amount of genetic variation, genetic reproducibility, and dense recombination sites. While the CC lines are phenotypically diverse, their genetic diversity in drug disposition processes, such as detoxification reactions, is still largely uncharacterized. Here we systematically measured RNA-sequencing expression profiles from livers of 29 CC lines under baseline conditions. We then leveraged a reference collection of metabolic biotransformation pathways to map potential relations between drugs and their underlying expression quantitative trait loci (eQTLs). By applying this approach on proximal eQTLs, including eQTLs acting on the overall expression of genes and on the expression of particular transcript isoforms, we were able to construct the organization of hepatic eQTL-drug connectivity across the CC population. The analysis revealed a substantial impact of genetic variation acting on drug biotransformation, allowed mapping of potential joint genetic effects in the context of individual drugs, and demonstrated crosstalk between drug metabolism and lipid metabolism. Our findings provide a resource for investigating drug disposition in the CC strains, and offer a new paradigm for integrating biotransformation reactions to corresponding variations in DNA sequences

    Multiple platform assessment of the EGF dependent transcriptome by microarray and deep tag sequencing analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epidermal Growth Factor (EGF) is a key regulatory growth factor activating many processes relevant to normal development and disease, affecting cell proliferation and survival. Here we use a combined approach to study the EGF dependent transcriptome of HeLa cells by using multiple long oligonucleotide based microarray platforms (from Agilent, Operon, and Illumina) in combination with digital gene expression profiling (DGE) with the Illumina Genome Analyzer.</p> <p>Results</p> <p>By applying a procedure for cross-platform data meta-analysis based on RankProd and GlobalAncova tests, we establish a well validated gene set with transcript levels altered after EGF treatment. We use this robust gene list to build higher order networks of gene interaction by interconnecting associated networks, supporting and extending the important role of the EGF signaling pathway in cancer. In addition, we find an entirely new set of genes previously unrelated to the currently accepted EGF associated cellular functions.</p> <p>Conclusions</p> <p>We propose that the use of global genomic cross-validation derived from high content technologies (microarrays or deep sequencing) can be used to generate more reliable datasets. This approach should help to improve the confidence of downstream <it>in silico </it>functional inference analyses based on high content data.</p

    Microarray and deep sequencing cross-platform analysis of the mirRNome and isomiR variation in response to epidermal growth factor

    Get PDF
    BACKGROUND: Epidermal Growth Factor (EGF) plays an important function in the regulation of cell growth, proliferation, and differentiation by binding to its receptor (EGFR) and providing cancer cells with increased survival responsiveness. Signal transduction carried out by EGF has been extensively studied at both transcriptional and post-transcriptional levels. Little is known about the involvement of microRNAs (miRNAs) in the EGF signaling pathway. miRNAs have emerged as major players in the complex networks of gene regulation, and cancer miRNA expression studies have evidenced a direct involvement of miRNAs in cancer progression. RESULTS: In this study, we have used an integrative high content analysis approach to identify the specific miRNAs implicated in EGF signaling in HeLa cells as potential mediators of cancer mediated functions. We have used microarray and deep-sequencing technologies in order to obtain a global view of the EGF miRNA transcriptome with a robust experimental cross-validation. By applying a procedure based on Rankprod tests, we have delimited a solid set of EGF-regulated miRNAs. After validating regulated miRNAs by reverse transcription quantitative PCR, we have derived protein networks and biological functions from the predicted targets of the regulated miRNAs to gain insight into the potential role of miRNAs in EGF-treated cells. In addition, we have analyzed sequence heterogeneity due to editing relative to the reference sequence (isomiRs) among regulated miRNAs. CONCLUSIONS: We propose that the use of global genomic miRNA cross-validation derived from high throughput technologies can be used to generate more reliable datasets inferring more robust networks of co-regulated predicted miRNA target genes

    Putting hornets on the genomic map

    Get PDF
    Hornets are the largest of the social wasps, and are important regulators of insect populations in their native ranges. Hornets are also very successful as invasive species, with often devastating economic, ecological and societal effects. Understanding why these wasps are such successful invaders is critical to managing future introductions and minimising impact on native biodiversity. Critical to the management toolkit is a comprehensive genomic resource for these insects. Here we provide the annotated genomes for two hornets, Vespa crabro and Vespa velutina. We compare their genomes with those of other social Hymenoptera, including the northern giant hornet Vespa mandarinia. The three hornet genomes show evidence of selection pressure on genes associated with reproduction, which might facilitate the transition into invasive ranges. Vespa crabro has experienced positive selection on the highest number of genes, including those putatively associated with molecular binding and olfactory systems. Caste-specific brain transcriptomic analysis also revealed 133 differentially expressed genes, some of which are associated with olfactory functions. This report provides a spring-board for advancing our understanding of the evolution and ecology of hornets, and opens up opportunities for using molecular methods in the future management of both native and invasive populations of these over-looked insects

    Sugar Beet BeetMap-3, and Steps to Improve the Genome Assembly and Genome Sequence Annotation (W875)

    Get PDF
    Weisshaar B, Himmelbauer H, Schmidt T, et al. Sugar Beet BeetMap-3, and Steps to Improve the Genome Assembly and Genome Sequence Annotation (W875). Presented at the Plant and Animal Genome XXIV Conference, San Diego, USA
    • …
    corecore